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FOREWORD

This report was prepared by Stanford Research Institute under
Contract NAS 2-3649, monitored at Ames Research Center, National Aero-
nautics and Space Administration, Moffett Field, California, by

Dr. Robert Linebarger. Dr. James Bliss was Project Leader.

While the author is responsible for the material contained in this
report, certain sections are primarily the work of others and are so
indicated. In addition, we would like to acknowledge the contributions
of A, F, Ferrera, who helped develop the interface system for computer
control of the tactile experiments, and J. R. Duke, who constructed

electronic interfaces for several systems peripheral to the computer.
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ABSTRACT

Experiments in tactile perception, tactile and visual tracking
behavior, and tactile and visual choice reaction time are described.
Results from an experiment on tactile perception of sequentially pre-
sented point stimuli indicate that content errors (responses that are
incorrect regardless of what order they are in) are constant as the
interstimulus interval is increased up to 200 ms, and that sequence
errors (errors caused only by responding in an incorrect order) decrease
exponentially with interstimulus interval. The total error can be ex-
pressed as a linear sum of a constant, representing the content error,
and a decaying exponential function of interstimulus interval (with a

time constant of less than 100 ms), representing the sequential error.

In the tracking experiments comparisons were made between tracking
performance when an airjet stimulator moved horizontally across the
forehead and when it moved along the palmar side of the hand and index
finger. Performance appeared to be about equal in these two cases. A
comparison of performance with a contacting tactile stimulus and a
visual display revealed essentially the same phase characteristics for
both displays, but less gain and more remnant power with the tactile

display.

Results from 'critical" tracking with both visual and tactile dis-
plays indicated a greater effective time delay with the tactile display
and no significant difference between tracking with the visual display
only and tracking with both the visual and tactile displays used simul-

taneously.

In the reaction-time experiments subjects could receive either
tactile or visual stimuli, or both simultaneously, on any one trial.

In a simple reaction-time experiment in which only one response was
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required, the tactile and visual reaction times were approximately equal.
However, in the two-choice version of the experiment, response times

were appreciably longer, and the probability of an error was greater with
the tactile stimuli than with the visual stimuli. When both tactile

and visual stimuli were presented simultaneously, significantly shorter
reaction times were obtained than with either stimulus alone. These re-
sults are consistent with a model which assumes that the sensory input

channels are independent of each other and that subjects tend to respond

to the first perceived stimulus.

Five Appendices describe developments on new techniques and facilities
for conducting a wide variety of experiments on tactile perception, which
range from presentation of multiple point stimuli to analyses of de-
scribing functions in tracking experiments. The key item in these facil-
ities is a LINC-8 computer, which will control, in a time-shared mode,

the presentation of the stimuli, and record and analyze the responses.
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I INTRODUCTION
by J. C. Bliss

The high-performance capability of the tactile channel makes it a
good contender for practical application. Examples of potential applica-
tions for tactile displays are situations in which vibration and high
acceleration might severely limit visual function, cases where so many
visual displays require attention that transferring some of this informa-
tion to other sensory channels can improve overall performance, and
applications where non-electrical displays have engineering and safety

advantages.

A primary goal of our research effort over the past few years has
been the development of information-processing models of the tactile
channel with which we can correlate our experimental findings and with
which special tactile display equipment can be designed. In addition,
development of tactile perception models should also contribute to the
general area of sensory communication, increasing our understanding of

vision, audition, and multisensory interactions.

In the course of this research, we have developed airjet and piezo-
electric tactile stimulators and an on-line digital computer system for
experiment control. We have also used these facilities to obtain experi-
mental results on spatial and temporal characteristics of the tactile
channel with stationary patterned stimuli (Bliss, Crane, Link, and
Townsend, 1966), moving patterned stimuli (Bliss, Crane, and Link, 1966),
and multiple point stimuli (Bliss, Crane, Mansfield, and Townsend, 1966),
Also, tactile displays for compensatory tracking have been developed and
operator describing functions have been determined with these tactile
displays (Bliss, 1966, and Seeley and Bliss, 1966), and with analogous

visual displays for comparison.

This report covers a one-year research effort on additional work

along these lines, Objectives of this additional work include the



further determination of spatial and temporal information-processing
characteristics of the tactile modality, to compare these characteristics
with vision, to study interactions between the tactile sense and vision,
and to study interactions between sensory perception and motor functionms.
The body of this report covers the work toward these objectives. In addi-
tion, there are five Appendices which describe techniques and instrumenta-

tion we have developed for on-line computer control of experiments.

In Sec. II, an experiment is described whose results reveal new
information about the spatia1>and temporal information processing charac-
teristics of the tactile modality. 1In this experiment, point tactile
stimuli were applied to the interjoint regions of the fingers one at a
time. The subject's task was to name the locations stimulated in the
order stimulated. The analyses of the results indicate that as content
errors (responses that are incorrect regardless of what order they are
in) are constant as the interstimulus interval is increased up to 200 ms,
and that sequence errors (errors caused only by responding in an incorrect
order) decrease exponentially with interstimulus interval. These two
types of error are independent. The total error can be expressed as a
linear sum of a constant, representing the content error, which is dif-
ferent for each subject, and a decaying exponential function of inter-
stimulus interval, representing the sequential error, which is nearly
the same for all subjects. These results specify certain temporal prop-

erties of the tactile channel with which any model must be consistent.

In Sec. III, experimental comparisons between tactual and visual
tracking performance are compared. First, several different tactile
displays are compared, with a rubbing or contacting stimulus moving
along the palmar side of the hand and index finger giving the best re-
sults. A comparison of performance with this tactile display versus a
visual display revealed that the tactile performance had equal bandwidth,
but less gain than the visual performance. The remnant data are examined
for evidence of a periodic sampler nonlinearity, but no such evidence is

found.




Also in Sec. III, performance on the "critical" tracking task with
visual and tactile displays is compared. The subject's effective time
delay with the visual display was shorter than with the tactile display,
and there was no significant difference in the effective time delay with
the visual display only and with both displays used simultaneously. These
results are consistent with the conclusions of the reaction-time experi-
ment described in Sec. IV and suggest a model in which (1) the sensory
input channels are independent, (2) subjects respond to the first per-
ceived stimulus, and (3) the time taken to respond consists of an input
distribution characteristic of the sensory channel plus a motor time

corresponding to the direction of the response.

These data, combined with results from our previous experiments,
are summarized and corresponding models suggested in Sec. IV. Finally,
the Appendices describe several developments on running of on-line-

computer-controlled experiments.



II PERCEPTION OF SEQUENTIALLY PRESENTED POINT STIMULI
by J. C. Bliss, J. W, Hill, and P, K. Mansfield

A. GENERAL

The transmission of information in the tactile sense is limited by
both spatial and temporal interactions. That is, the presentation of
point stimuli either simultaneous with, or in close temporal proximity
to, another tactile point stimulus will affect the accuracy of perceiving
that stimulus. Recent experiments performed in this laboratory have

examined the effects of these interactions on tactile perception.

In one study (Bliss, Crane, Mansfield, and Townsend, 1966), spatial
interaction was investigated by presenting subjects with from two to
twelve simultaneous jets of air to any of the 24 different interjoint

regions of their fingers and measuring their accuracy in reporting the

stimulated locations. Subjects were able to report from 3 to 7 positions

correctly; however, their performance in reporting only one portion of
the stimulus field indicated that as many as 11 out of 12 positions are

actually available,

Somewhat earlier, a study was performed (Bliss, Crane, Link, and
Townsend, 1966) to determine the conditions in which temporal interactions
interfere with performance. Presenting pairs of alphabetic shapes se-
quentially to the same anatomical location on the hand, these investigators
found (1) an increase in letter reversals for very short interstimulus
intervals, and (2) a greater backward-masking effect for small inter-
stimulus and stimulus-on intervals, and a greater forward-masking effect

for longer interstimulus and stimulus-on intervals.

The information obtained from these experiments has been used to
suggest models for tactile perception, based on masking and interference
phenomena, which are similar to models, such as Sperling's (1963), for

visual memory tasks. Sperling, for example, speaks of three major
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intervals: (1) a read-in interval of 50 to 100 ms during which stimuli
tend to summate and superimpose; (2) an interval immediately following,
during which a second stimulus can cancel or replace the first stimulus

before it is read out; and (3) a later interval of reduced interference.

The experiment described in this section was designed to investigate
further the peréeption of sequentially presented tactile stimuli. How-
ever, instead of using alphabetic shapes presented sequentially to the
same anatomical location, the stimuli consisted of brief jets of air to
any of the 24 interjoint regions of the fingers ( thumbs excluded). The
subjects' task was to report the regions stimulated. In this sense,
this experiment is more analogous to the earlier one on simultaneous

stimulation.

To gain additional insight into the nature of possible masking
phenomena, each subject was asked, in separate tests, to rate each
stimulus sequence on how much apparent motion it produced. In relation
to an epochal model, a subject ought to perceive motion if the successive

point stimuli are within adjacent temporal epochs.

Investigations of the perception of tactile apparent motion are
not new. Boring (1942) reports several early studies of apparent move-
ment between two successively stimulated skin loci, but as Sherrick and
Rogers (1966) state, those studies rarely quantified the variable of
interest, such as stimulus duration or interstimulus interval. Moreover,
the nature of the stimulus, produced by dropping a weight on the skin
and retrieving it electromagnetically, left much to be desired. Sumby
(1965) indicated the most critical variable for vibrotactile apparent
motion to be the time interval between stimuli. Kotovsky and Bliss (1963),
asking their subjects to report which of two airjets came on first and
how much apparent motion they felt, found that increasing the overlap

time of the pulses beyond 0.2s caused a drop in accuracy.

In the present study, the time interval between stimuli was varied
from a simultaneous condition up to a 200-ms interval, while the stimulus

duration remained constant at 10 ms.




B. METHOD

1. Apparatus

The experiment was carried out under control of a CDC 8090 computer
system, which was used to store stimulus patterns and the sequence in
which the patterns were to be presented (Bliss and Crane, 1964). This
system was designed for use with up to 96 tactile or visual stimulators.
Only 24 tactile stimulators were used in this experiment, one for each
of the 24 interjoint regions of the fingers (thumbs excluded). The
palmar sides of the fingers were suspended about 1/8 inch above the
airjet stimulators shown in Fig. 1. The subjects' arms were supported
from wrist to elbow, permitting the hands to be suspended in this manner
for extended periods without fatigue. Each subject had his own set of
airjet stimulators, which was initially adjusted to his hands and never
reset unless he requested that a particular jet be readjusted. This
ensured better constancy in the positioning of the airjets from session

to session,

Each jet of air was formed by a 0.031-inch outlet nozzle under
control of a high-speed electromagnetic valve. The air-pressure pulse,
measured 1/8 inch directly above the airjet outlet, was about 3 psi,
with a rise and fall time of about a millisecond and an overall pulse
width of about 2.5 ms. A 200-c/s pulse-repetition rate was used
through the experiments. Thus, all stimulators were simultaneously
turned on and off 2 or 3 times during the 10-ms stimulus-presentation
time. The advantages of airjet stimulation for this investigation were
that relatively uniform stimulation was produced over nonuniform cutaneous

surfaces and that stimulator spacing could be easily adjusted.

2. Subjects

Five male subjects were used., Subjects B and L were high school
seniors, N was a college freshman, S, a college junior, and G, a graduate
student. N had been totally blind from birth; G became blind seven
years ago. None of the subjects had ever participated in an experiment

of this nature.



(a) TOP VIEW

(b) SUBJECT'S VIEW Ta-4719-84

FIG. 1 APPARATUS FOR HOLDING AIRJET NOZZLES BELOW THE 24 INTERJOINT
REGIONS OF THE FINGERS




3. Procedure

On any one trial, 2 or 3 stimulation points were randomly selected
(by the computer) out of the possible 24 interjoint locations, and the
corresponding stimulators then activated, one at a time, for 10 ms. The
time interval (Ti) between the offset of the first stimulator and the
onset of the second stimulator, and (when n = 3) between the offset of
the second and the onset of the third stimulator, was one of the follow-
ing: (1) -10ms (that is, the 2 or 3 points were simultaneously activated);
(2) 2 ms; (3) 50 ms; (4) 100 ms; (5) 200 ms. Except in the simultaneous
condition, the same interjoint position could be stimulated repetitively
in a single trial. In any one session, the number of positions stimulated,
n, in each trial was constant and known by the subject, while Ti was
constant but unknown., All positions were stimulated an equal number of

times per session.

After each stimulus, the subject orally reported the locations per-
ceived in the order of their occurrence, using the alphabetic labels
shown in Fig. 2. Each response was typed into the control computer by
the experimenter, and after a fixed delay of 2s, the next stimulus was
automatically presented. There was no fixed time within which a subject
was forced to respond. Verbal feedback was given after each response

during training only.

Each subject participated in one 40-minute session a day, five days
a week, for four weeks. The first ten days were devoted to training
the subjects, in the hope that their performance at the taék would reach
asymptote before testing began., The number of trials per training
session was selected so that the session would be completed within
40 minutes. For the testing sessions, the number of trials for each
value of n (at each value of Ti) was chosen to allow the variance for
the mean number correct per n-value to remain constant across all values
of n (in this case, for n = 2 and n = 3). (Specifically, the number of
trials per session was set so that the probability that the mean number

correct per value of n would exceed the true mean by more than



TA-4719- 82R

FIG. 2 FINGER LABELING FOR TWO HANDS

0.3 stimulus position was $0.1). The resulting training and testing

schedule is shown in Table I.

In addition to the scheduled tests, during the last two weeks a
third test was run each day. This test was the same as one of the two
scheduled tests run that day, but the subject was instructed not to re-
port the positions perceived but to rate each stimulus on how_much ap-
parent motion was produced by the stimulus. The subjects were instructed
to rate the stimuli from 1 to 10, basing their judgments on how smooth
the motion appeared and how much of the area between the stimulated posi-

tions appeared to be covered by the "moving" stimulus.,

C. RESULTS AND DISCUSSION

1. Apparent Motion

The degrees of motion perceived by the subjects for stimuli sepa-

rated by each of the time intervals are pictured in Figs. 3 and 4.
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MEAN APPARENT-MOTION RATINGS

(Scale from 1t010)
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TA-6070-7

FIG.3 MEAN APPARENT-MOTION RATINGS AT EACH TIME INTERVAL,

FOR n = 2 SESSIONS (The —10 ms interval is the simultaneous condition.)
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FIG. 4 MEAN APPARENT-MOTION RATINGS AT EACH TIME INTERVAL,
FOR n = 3 SESSIONS
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Figure 3 represents those sessions in which the stimuli consisted of

two positions stimulated, while Fig., 4 represents the n = 3 sessions.
Immediately apparent from the plots is the amount of variability among
subjects, which could be due either to real differences in the amount of
motion perceived by each of them, or to differences among them in what

they considered to be "little" or "much" motion.

From Fig. 3 it can be seen that on the average, subjects perceived
about the same amount of motion in stimuli separated by 2, 50, or 100 ms.
Stimuli separated by any of these intervals produced more apparent motion
than those either occurring simultaneously or separated by 200 ms. of
interest is the fact that all but one subject perceived some degree of

motion even in the simultaneous and the 200-ms-interval cases.

Figure 4 shows that when three locations are stimulated, subjects
reported more sensation of movement with an interval of 50 ms than with
any other interval. Again, all subjects but Subject N reported some

apparent motion at all time intervals.

These results are somewhat in accordance with the results of
Kotovsky and Bliss (1963) and Sumby (1965), who found apparent motion
most prevalent for stimuli temporally separated by 50 to 150 ms, which
would place the stimuli in adjacent read-in intervals. The fact that
the present results showed some apparent motion for simultaneous stimuli
as well as for stimuli separated by 200 ms may be attributable to the
vague standard used by the subjects in deciding what was "a little" or

"a lot" of motion.

2. Error Analysis

Turning now to the analysis of response errors,¥* the number of

errors was counted for each stimulus in a sequence (lst and 2nd for

* This analysis was prepared by John Hill and constitutes a preliminary
report on an analysis being carried out as part of a doctoral dis-
sertation at Stanford University. While this data analysis was sup-
ported under NIH Grant NB 06412 at Stanford University, the experiment
was designed and performed at Stanford Research Institute under
Contract NAS 2-3649.

14




n = 2; and 1st, 2nd, and 3rd for n = 3) for each subject. The types of
errors were classified according to the following definitions:
(1) Total Error: The fraction of erroneous stimulus-
response pairs out of the total number of stimulus-
response pairs. That is, unless the ith response

correctly identified the ith stimulus, an error
was counted.

(2) Content Error: The fraction of the total number
of stimuli that were not correctly identified by
any of the responses in a trial.

(3) Sequential Error: The total error minus the con-
tent error.
For example, the response sequence BAE to the stimulus sequence ABC

contains three total errors, one content error, and two sequence errors.

An analysis of variance was performed on the data to evaluate the
significant effects of the five subjects, the five different inter-
stimulus intervals (Ti), and two or three stimuli sequence positions (SSP)
on total and content error. The data are counts of discrete responses
and hence obey a multinomial distribution which is approximately normally
distributed. Since many error fractions are close to zero, the arcsin
transformation was used on the error fractions in order to meet the
equal variance assumptions of the analysis. The results of the analysis
are given in Tables II and III. The important features of the analysis

are as follows:

(1) The total error for different values of T; is signi-
ficantly different for both n = 2 and n = 3.

(2) The content error for different values of Ti is not
significantly different, and the data therefore indi-
cate that content error does not vary with Ti'

(3) The content error (and the total error for n = 3)
at different positions in the stimulus sequence is
significantly different. Thus, the error varies
with position in the subject's response sequence.
This result is in agreement with Bliss, Crane,
Mansfield, and Townsend (1966; Fig. 7) for simul-
taneous point stimuli, and with Bliss, Crane, Link,
and Townsend (1966) for sequential patterned stimuli.
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Table 11

SUMMARIES OF ANALYSIS-OF-VARIANCE OF ARCSIN TOTAL ERROR

Source df MS F P

Between Subjects (S) 4 | 0,04415
Ti 4 1 0.87339 | >100 <0,001
Ti X S 16 | 0.00855 ~
SSP 1 | 0.00228 2.96 - .
SSP X S 4 | 0.00077 "
Ti X SSP 4 | 0.00090 1.32 -
’I‘i X SSP X S 16 | 0.00068
Between Subjects (S) 4 10,11504
Ti 4 | 0.98664 60,2 <0.005
Ti XS 16 | 0.01639
SSP: Linear 1 |0.15075 18.82 |<0.005 P
SSP: Remainder 1 |0.12045 15,07 |{<0.005 :
SSP X S 8 | 0.00801
Ti X SSP 8 | 0.00673 1.44 -
'I‘i X SSP X S 32 | 0.00468

Table III

SUMMARY OF ANALYSIS-OF-VARIANCE OF ARCSIN

CONTENT ERROR

Source

df

MS

F p

Between Subjects (S) 41 0.17517

Ti 41 0.,01012 1.60 -

Ti X S 16 | 0,00634 T
SSP 1] 0.03900 17.98 | <0.025 o
SSP X § 41 0.00217

Ti X SSP 4| 0,00993 1.88 -

Ti X SSP X S 16 | 0.00526

Between Subjects (S) 41 0.30534

Ti 41 0,00791 1.28 --

Ti X s 16 | 0.00615

SSP: Linear 11 0.06164 9,22 | <0,025 | ™
SSP: Residual 1] 0.00046 - - 2
SSP X S 8 | 0.00669

Ti X SSP 81 0.00646 1.11 -

Ti X SSP X S 32| 0.00580
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The interaction terms T; X SSP are all insignificant;
therefore, the data indicate that the error for each
subject is the linear sum of two independent terms.
This result is in contrast to our results reported in
Bliss, Crane, Link, and Townsend (1966), in which a
greater percentage of first-response errors were ob-
tained with patterned tactile stimuli for short inter-
stimulus intervals and a greater percentage of second-
response errors were obtained for long interstimulus
intervals.

The average values of total error and content error for both n = 2 and

n = All of the data

3 as a function of Ti are given in Figs. 5 and 6.
reported are corrected for probability of guessing the content (but not
sequence) according to a model similar to that reported in Bliss, Crane,
Mansfield, and Townsend (1966),

However, this correction makes at most

only a 2-percent increase in error rate and thus is negligible. The
graphs of Figs. 5 and 6 are an average over all five subjects and all

stimulus sequence positions.
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FIG. 6 AVERAGE TOTAL AND CONTENT

ERRORS AS A FUNCTION OF
INTERSTIMULUS INTERVAL FOR n = 2

For n = 3, the SSP mean square
can be represented by a linear por-
tion and an orthogonal quadratic
portion. The linear portion is
significant in both total- and
content—-error calculations, while
the quadratic term is significant
only in the total-error calculation.
This quadratic term occurs because
of the high total error in the
middle sequence position, a result
similar to that found by Bliss,
Crane, Link, and Townsend (1966)
with patterned tactile stimuli.
The total and content error for
each SSP, averaged over all values
of Ti are shown in Fig. 7 for both

n=2 and n = 3.

In all of the analyses, the interaction term between SSP and Ti is

not significant.
linear sum of three factors, one due
to each subject E(S), one due to
each interstimulus interval E(Ti),
and one due to the stimulus sequence
position E(SSP).

That is, the total

error, is given by

ET’

E =

T E(S) + E(Ti) + E(SSP) + ¢

(1)
where € is the error associated with
the measurement. In most of the
experiments, € is normally dis-
tributed with mean equal to zero and

a standard deviation (Ge) of 0.07,
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To investigate the error further, the sequential error was obtained
by subtracting the content error from the total error for each SSP, sub-
Jject, and value of Ti' A regression analysis of the sequence data was
made using different types of curves: 1linear, hyperbolic, and exponential.
The best fit was obtained with the exponential curves. The regression curves
shown in Fig. 8 explain a significant portion of the error variation due to
the different values of Ti' In fact, the very small amount of residual var-
iance from the curves leaves little evidence to suggest that these regres-
sion lines are not the true model for the data. Summaries of the analysis
of variance for the regression lines, with measured regression variance and
residual variance, are given in Table IV. Other curves that were used to
fit the data gave not only a significant regression, but a significant re-

sidual as well; thus, they were not complete in this sense.
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FIG. 8 EXPONENTIAL REGRESSION CURVES FITTED
TO SEQUENCE ERROR DATA
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Table IV

ANALYSIS-OF-VARIANCE FOR REGRESSION ON SEQUENCE ERROR

n =2 n =3
Source df MS F P daf MS F P
Between Ti 4 4
Due to regression 1{2.2926|653 <0.001 113.6368|330 <0.001
Residual 310.0052 1.47 -- 3(0.0153 1.39 -
Ti XS 16|0,0035 16 |0.0110

If the E(Ti) error component of Eq. (1) is replaced by the expo-

nential model, then the total error can be represented by the formula

Ti + 10
Exp (- ——] + E(SSP) + ¢ (2)

T n

where T is a constant depending on n. This modeling process could be
carried further. The error that depends on the stimulus sequence posi-
tions, E(SSP), could be expressed as the sum of a linear and a quadratic

term, if such results were deemed important,

The subjects can be compared as a group by comparing their values
of E(S). It is suspected, for example, that Subject N, because of
travel fatigue and difficulty in concentrating, had a significantly
higher error rate than the other subjects. This hypothesis is tested
on the content error for the n = 2 condition by the one-way analysis of

variance summarized in Table V.

Table V

SUMMARY OF ANALYSIS-OF-VARIANCE OF
SUBJECTS' CONTENT ERROR RATES FOR n = 2

Source df MS F P

Subject N 1] 0.12934 | 36.6 | <0,01
Between Other Subjects 3 | 0.00353
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Using the data from this experiment, we can compute the percentage
of erroneous responses, where an erroneous response is a response pattern
that contains at least one content error. We can then compare the error
rates on this experiment with those of an experiment by Alluisi, Morgan,
and Hawkes (1965), in which multiple electrically excited stimuli were
presented. [Since simultaneous presentation was used both in Alluisi's
experiment and in this sequential experiment (Ti = -10 ms condition),
the performance in the two studies can be compared.] Figure 9 shows the
percentage of erroneous patterns of each experiment. Both error means for
n = 2 are about the same, but Alluisi's error rate is about 50 percent
higher for 3 loci (n = 3). A lower error rate in Alluisi's experiment
might have been predicted, since the subjects were guessing from a
smaller field of stimuli (6 instead of 24), However, certain differences
between the two experiments, such as the location of the stimulators and

the type of stimulation, might account

for the differences in the results.

1 T
ALLUISI - 1965 !
OUR
The maximum possible information =====| st SET }EXPQNMENt
50 | === 2nd SET ] sygyecT —]
that could be transmitted using AVERAGE
T TRAINING

%

Alluisi's patterns is 3.9 bits for

H
o
|

n =2 and 4.3 bits for n = 3, Our
results show that the 24-position

stimulus pattern, on the other hand,

o
3]
!

transmits at least 7.3 bits for

n =2 and 8,1 bits for n = 3.

3
I

Another important method of

ERRONEOUS RESPONSES

evaluating the ability of subjects
on tactile tasks is to measure the

amount of information they transmit.

Like error rate, information can be ! 2 3
divided into two separate parts;: NUMBER OF Loci SﬂMU%ﬁ;&ER
1 . .

(1) content information (depends on /o o ouoiolco OF PERFORMANCE

the content of the response); and IN OUR EXPERIMENT (T, = 10 ms

condition) WITH PERFORMANCE

IN ALLUISI'S EXPERIMENT (Alluisi,

on the order or sequence in which 1965)

(2) sequence information (depends
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the responses are given). A means of measuring or bounding information in
tactile patterns has been developed by J. Hill (1967). Content information

can be bounded from below, and sequence information can be estimated.

Using Hill's method, the content information was given a lower bound
for each subject, and for each value of Ti’ on the second set of n = 2 and
n = 3 sessions. These results, averaged across values of Ti’ are shown in
Table VI. Like any other random variable, an analysis of variance can be
performed on the information bounds to find their significant features., The
results of the analysis are summarized in Table VII. Like the content error,

content information is a constant over different values of Ti'

Table VI

LOWER BOUNDS ON CONTENT INFORMATION
(in bits)

Subject: S N L G B Average
n =2 7.7815.,9217.56 | 7.28]7.98 7.30

n =3 9.1015.60}9.60| 6.98 | 9.48 8.14

Table VII

SUMMARY OF ANALYSIS-OF-VARIANCE OF
CONTENT INFORMATION ON SECOND n = 2, n = 3 SESSIONS

n =2 n =3
Source df MS F p | df MS F P
Subjects (S) 4 113.3314 4 | 15.8006
Ti 4 0.0554 | <1 | —-- 4 0.2966 | 1.56 | ——
S X Ti 16 0.1701 16 0.1893

Though content information varies greatly from subject to subject,
sequence information is relatively constant for all the subjects. The se-

quence information for the second set of trials, for all five subjects

averaged together, is given in Fig, 10. The interesting feature of
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Fig.

10 is that the initial

slopes of the information

versus Ti are about the same

for both the n = 2 and n = 3

conditions, indicating that

there may be an intrinsic

limit on the rate of tactile

information intake. The

slopes of the sequence-

information rate are about

17 bits/s, or one bit/60 ms.

The content and total informa-

tion transmitted by the sub-

Jjects are summarized in

Fig.

11. The figure also

shows the information con-

tained in the stimulus H(S).

It should be kept in mind

that these are lower bounds

on the information trans-

mitted and that H(S) is an

upper bound.
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AS A FUNCTION OF INTERSTIMULUS
INTERVAL T,

In conclusion, this analysis

has pointed out several results im-
portant to the development of a model
for tactual perception. It has been
shown that content error is not re-
lated to the time interval separat-
ing point stimuli (at least for
intervals less than 200 ms), but is
related to the position in the sub-
ject's response sequence. Further-
more, as interstimulus time is in-

creased, the subject's error rates



for correct sequential responding decrease exponentially with a time
constant of about 26 ms for two stimuli presented, and about 68 ms for
three stimuli presented. Regarding the transmission of information, the
data from this experiment indicate an information intake rate for short
interstimulus intervals of about 17 bits/s. There is some indication

of an intrinsic limit on the rate of tactile information intake.

D. FUTURE EXPERIMENTATION

The results from the above investigation suggest the following
plans for a future experiment. The data have suggested certain modifi-
cations, and these have been incorporated into the plans. For instance,
large values of n (the number of points stimulated in a single trial)
seem desirable; thus, n will be either 4 or 6, instead of 2 or 3, as in
the last experiment. It will be especially interesting to learn whether
the initial tactile~information intake rate of about 17 bits/s, found/
with the n = 2 and n = 3 conditions, will continue to hold true as n is
increased. In addition, the results suggested that a somewhat different
choice of intervals between any two successive point stimulations would
permit more accurate curve fitting. In a future experiment, the inter-

vals (Ti) will be 5, 16.66, 50, 100, and 200 ms.

Future experimental plans involve three other phases, all with
simultaneous rather than sequential presentation of tactile stimuli.
These phases also are extensions of earlier investigations completed
in this laboratory. In the first of these phases, called whole-
reporting, subjects receive from 2 to 12 simultaneously presented
stimuli, and report as many correct stimuli as they can. The number
of correctly reported items defines the subject's so-called span of
attention or immediate memory (e.g., see Miller, 1956). This span has
been estimated to be 3 to 4 items in one of our earlier experiments,
while in analogous studies employing a visual task, the span typically

ranged from 4 to 7 items (Miller, 1956; Sperling, 1960).
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In the whole-report phase, the method is to be the same as that
described by Bliss (25 April 1966; Sec. 5), with the following
modifications:

(1) Reducing the stimulus presentation time from 100 ms to

2.5 ms, (This means there will be only a single pulse
from the airjets, which normally pulsate at 200 c/s.)

(2) Relabeling the finger positions so that each of the
three rows reads across from A to H., Earlier results
indicate that subjects show more accuracy in perceiving
points stimulated in the top row (A-H) than in the
bottom row (Q-X). In order to attribute this result
to increased sensitivity in the fingertips and not to
increased difficulty in reporting positions in the
bottom row (because of their less familiar letter
labels), all three rows will now be identically labelled.

(3) Eliminating reinforcement (which consisted of presenting
the original stimulus after the subject responded) dur-
ing testing. Previous subjects generally agreed that
reinforcement was most helpful during training; also,
there was some evidence that the fingers had not fully
recovered from the long reinforcement (1-1/3 to 3 seconds)
by the time the next stimulus was presented.

(4) Increasing the inter-trial duration from 2 to 4 seconds.
Allison (1962) has shown that 4 seconds is adequate for
full recovery of all components of the evoked response
occurring within 300 ms of nerve and finger stimulation.
Another phase will involve a sampling, or partial-report, pro-
cedure. Several investigators of short-term visual memory (Sperling,
1960; Averbach and Coriell, 1961), to bypass the immediate-memory
limitation discovered in whole-reporting, have employed sampling pro-
cedures and have found that subjects, at the time of stimulus presenta-
tion and for a few tenths of a second afterward, have more information
available than they can later report. Analogously, we performed a
sampling or partial-report tactile stimulation experiment in which
subjects were signaled, after various delays, to report the stimulated
points from only one of the three rows of points. Under this method,
the results indicated that subjects had more information available than
indicated by a whole-report, averaging one additional stimulus position
available out of twelve. Two subjects performed considerably better

than the average. One of these, an early blind subject, averaged about

25



8 points correctly perceived out of 12 on whole-report, and over

11 points available out of 12 on partial-report,

The paradigm for this phase is also described by Bliss (1966;
Sec. 5). In addition to the changes listed above, which are true for
the entire experiment, there will be two additional differences between
a future experiment and the earlier partial-report experiment: (1) only
the k = 4, n = 12 condition (four stimulated positions in each row)
will be used; (2) there will be an increase in the number of trials in
each of the six time-interval conditions, from 132 to 264 trials. This
increase is expected to add to the stability of the results in each

condition,

The final phase will consist of a partial-report procedure with
an additional masking stimulus introduced. At some designated time,
following the stimulus but preceding the response, all 24 positions will
be briefly stimulated. The effect of this masking stimulus on the

tactile short-term memory will be investigated.

26




IITI COMPARISONS BETWEEN TACTILE AND VISUAL TRACKING BEHAVIOR
By J. C. Bliss and P. K. Mansfield

A. FURTHER ANALYSIS OF DESCRIBING FUNCTION DATA

In our previous report (Bliss, 1966) we describe a series of track-
ing experiments with visual and tactile displays. By varying the sense
modality employed (i.e., visual, tactile, or both) with continuous com-
mand signals and pure-gain vehicle dynamics, our aim has been to isolate
the sensory factors contributing to performance and to obtain a valid

comparison between the visual and tactile senses for tracking tasks.

The system for measuring describing functions consisted of a
CDC 8090 computer with A/D and D/A conversion channels and display and
response apparatus. The computer was programmed to generate a command
signal consisting of a sum of the eight sinusoids shown in Table VIII.
The computer then cross-

. : 1
correlated either the subject's Table VIII

. . 1
error signal or the subject’s COMPOSITION OF COMMAND SIGNAL

response signal with a cosine

and a sine function at each of Frequency Amplitude

these frequencies plus eight c/s rad/s

more frequencies shown in 0.0261 0.164 1.0

Table IX, Further calculations 0.0436 0.274 1.0

by the computer transformed 0.0960 0.603 1.0

these cross-correlations into 0.2440 1.53 1.0

an amplitude and a phase com- 0.4270 2.68 1.0

ponent at each of the sixteen 0,6730 4,23 1.0

measurement frequencies. 1,25 7.85 0.25
The display apparatus con- 2.30 14,45 0.25

sisted of a servopositioned
airjet stimulator which moved horizontally across the forehead or the

palmar side of the hand over a range of about 4.5 inches. In the

27



forehead case, the analogous visual dis-
Table IX
play was obtained by placing a mirror
MEASUREMENT FREQUENCIES

NOT CONTAINED IN in front of the subject so that he could
COMMAND SIGNAL see the position of the airjet nozzle.
In the hand case, the visual counterpart
Frequency

was obtained by having the subject watch
c/s rad/s

the airjet nozzle directly. In both cases
0.165 1,04 a pointer was provided to give a visual
0.845 5.31
1.10 6.98 zero reference.
1.38 8.71
1.51 9.47 Figure 12 shows the control loop
1.64 10.3 containing the subject. Since the dynamics
1.80 11.3 .
2.05 12.9 of the display servo system were not

negligible, two methods were used, in the
course of the experiments, to find the
subject's open-loop describing function. In the first, the error and
response spectra were measured. The error spectrum was multiplied by
the measured transfer function of the servo to obtain the display
spectrum. Then the amplitude of each response component was divided
by the amplitude of the display component at the corresponding command
frequency to obtain the subject's gain |Y| and phase (<Y) at that
frequency (w). In the second method, the display signal was measured

directly from the feedback potentiometer of the display servo.

COMMAND + ERROR | 1 icplay DISPLAY BUECT RESPONSE
SIGNAL SERVO suBJ

TA-€070~1

FIG. 12 CONTROL LOOP CONTAINING SUBJECT
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The calibration of the system and the describing functions ob-
tained are given in the previous report (Bliss, 1966). Further dis-

cussion of the data will be given below.

1. Comparison of Forehead and Hand Tactile Displays

Three subjects were used in the experiments, all in their early
twenties. Previous to testing, each subject was given from 12 to
30 (depending on his mean-square error scores) two-minute trials,
during which (on alternate trials) the display was changed from
visual to tactile. Testing consisted of three four-minute trials at

each display condition for each subject.

Figure 13 shows the forehead and hand tactile results averaged
over the three subjects. The differences between these two curves
are less than one standard deviation, except near the crossover
frequency, where the difference is slightly more than one standard
deviation. Thus these differences are hardly significant, and it
appears that forehead stimulation and hand stimulation resulted in

approximately equal performance,

2. Comparison Between Visual and Tactile Performance

The best performance with a tactile display was obtained on the
hand when the airjet nozzle was turhed off, but allowed to contact
the skin, Figure 14 shows a comparison between this tactile-contact
condition and visual performance for one subject. The amplitude
differences are significant, but the phase curves are practically
identical. Thus, our tentative results, based on one subject,
suggest that with tangential as well as normal forces on the skin,
the tactile performance has equal bandwidth, but less gain, than

the visual performance.

3. Mean-Square Error and Display Measurements

The computer also calculated the mean-square error and display
for each run. Tables X and XI show these results, averaged over

three sessions, for each subject and each condition of the experiment.

29



| T | T TrTrh
40 — -]

- Ssa FOREHEAD —

I

FTTTI

I

MAGNITUDE | Y|

]

0.4

==
-
-~

——
-~

100 |— —

200 - \ =

deg

300 — \ -

PHASE <Y
b

400 — N

500 I~ ]

600 I U N I ] ] 1t 11l
o X] .0 10

w——rad/s
T8-6070-2

FIG. 13 DESCRIBING FUNCTIONS FOR HAND AND FOREHEAD TACTILE
DISPLAYS (200-c/s airjet)

30




10.0 \

8.0

T TTT IR

|11

6.0
5.0

4.0

T TTTT
|

T

|

r

3.0

I

2.0 TACTILE=™~_

CONTACT

MAGNITUDE | Y|
IR
//
[ 1I1]

I

I

\
0.4 L1 1 1 1iiil I N B A W N AN

o o T T T TTTTTI T T T TTTTT

it £ =873~ JACTILE-
o CONTACT
\3

100 —

deg

200 — —

PHASE <Y

300 —

400 L1 11 1itl [ 1 11 ritl

ol 10 o\
w—rad/s

TB-6070-3

FIG. 14 DESCRIBING FUNCTIONS FOR VISUAL AND TACTILE (Hand-Contacting
Stimulus) DISPLAYS

31



Table X

AVERAGE MEAN-SQUARE ERROR FOR EACH SUBJECT AND VISUAL,
TACTILE, AND BOTH DISPLAY CONDITIONS
(ARBITRARY UNITS)

Tactile
Subject Visual (Forehead-~ Both
200 c/s)
1 2.32 4.91 1.84
2 2.06 5.69 2.10
3 2.63 5.88 2.40
Average 2.33 5.49 2.11
Table XI

AVERAGE MEAN-SQUARE DISPLAY SIGNAL FOR EACH SUBJECT
AND VISUAL AND TACTILE DISPLAY CONDITIONS

Subject Visual Tactile
200 c/s 70 c/s 40 c/s Contact
1 1,58 3.04 3.06 5.39 3.80
2 1.63 4,04 -- - -
3 1,94 11.3 - - -
Average 1,72 6.13 - - —-

Tactile mean-square error was generally about twice the visual mean-—

square error,

The one anomalous result was with Subject 3, who

produced a tactile (hand display) mean-square error of more than

five times his visual mean-square error.
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Even though the describing function results indicate superior per-
formance under the tactile-contact condition, the mean-square error

values for the 200 cs and 70 c¢s conditions were lower.

In general there was less mean-square error when both displays were

used simultaneously than with either display alone.

4, Remnant Data

There have been a number of suggestions that a model for the human
operator should include a nearly periodic sampler (e.g., Bekey, 1962).
The following quotation from McRuer, et al. (1965) explains the effect
of this hypothesis on the output spectrum:

"With the line spectrum forcing function, nonlinearities

in the operator would be expected to result in output spectrum

peaks which are harmonically related to the forcing function

frequencies. Constant-rate sampling on the part of the opera-

tor will also tend to produce recurring peaks and valleys in

the output spectrum. If the sampler is precisely periodic at

a frequency w5, output spectral lines would be expected at

frequencies w, * m&g, m=0, 1, 2, 3 .... Slight variations

in sampling rate over a measurement run would tend to slur

the lines into peaks.'

To examine our data with regard to this hypothesis, the output spectra
from single runs for each subject were plotted as shown in Figs. 15
through 17. The forcing-function frequencies are shown as line spectra.
The other measurement frequencies were chosen in the region around half
the expected sampling frequency, to coincide with Bekey's "sampling
peak.' For this reason, only the region between 4 and 15 rad/s is plotted.
The output spectra atu% and u% are uncorrected for the fact that the

forcing-function amplitude at these frequencies was only one fourth that

at the lower frequencies.

These data fail to show any stable, clearly defined peaks that could
be attributed to a periodic sampling nonlinearity. The power at remnant
frequencies is generally less than that at the nearby forcing-function

frequencies. Moreover, the remnant curves are certainly not reproducible

from run to run.
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While the response power at w_, w7, and u% with the visual display
is consistently greater than that with the tactile display, the remnant

power is roughly the same with the two displays.

B. BISENSORY PERFORMANCE ON THE ''CRITICAL" TRACKING TASK

Jex, McDonnell, and Phatak (1966) have developed a "critical" tracking
task in which a human operator is required to stabilize an increasingly
unstable first-order controlled element up to the critical point of loss
of control. They show that this critical point of instability depends
primarily on the operator's effective time delay while tracking. Their
data with this task indicate that the operator's behavior is tightly
constrained so that a measure of effective operator delay with small

variance is obtained.

To compare sensory effects in this task, we have developed LINC-8
programs and peripheral equipment for performing the "critical' tracking
task with visual and tactile displays. Figure 18 shows a block diagram
of the autopaced 'critical tracking task developed by Jex, McDonnell,
and Phatak. Our initial LINC-8 program attempted to simulate this block
diagram as closely as possible, with all blocks except the display and
operator being realized by the computer. Our computer program also con-
tains a command generator that produces a sum of eight sinusoids in the

range .026 to 2.3 c/s.

The tactile display for this task consisted of a servo-positioned
3/8-inch-diameter spring-loaded wheel that moved along the palmar surface
of the hand and index finger as shown in Fig. 19. The subject's task was
to manipulate a pencil-~type joystick so that the tactile wheel was always
at the same anatomical position. The subject wore a blindfold for this
display condition. The visual display consisted of merely visually ob-
serving the wheel. On some trials both display conditions were used

simultaneously, the subject visually observing the wheel moving against
his hand.

The frequency characteristics of the servomechanism that positioned

the wheel have been reported previously (Bliss, 1966) .
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FIG. 18 BLOCK DIAGRAM OF CRITICAL TASK (from Jex, McDonnell, and Phatak, 1966)
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FIG. 19 TACTILE DISPLAY FOR “CRITICAL'" TRACKING TASK
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Figure 20 shows the results obtained with one subject on each display
condition over a 3-week period. During this period several difficulties
were noticed with the task. The major difficulty was that if the subject
failed to respond at all, the LINC-8 system was sufficiently noise-free
that the output didn't reach the display limit until very large values
of A were reached. That is, even though the controlled dynamics were
unstable, with no input the output always stayed within bounds. (while
this problem does not occur with the STI Model MK IV Critical Task Tester
because of internal drift and noise in the operational amplifiers, it is

important to realize the crucial role of this noise.)

To get around this difficulty, two modifications of the task were
tried. In the first, the initial conditions of the controlled dynamics
were set to one-half the final condition from the preceding run. This
had the effect of giving the subject an initial command step of random
size and direction. If the subject made no response, the display limit
was reached with a A of about 2.5, so that the subject was forced to
respond to obtain a reasonable score. However, the subject soon learned
that early in the trial it was possible to properly zero the controlled
dynamics so that subsequently a ''no response' strategy would produce an
extremely high A score. Sincg the subject had to work hard initially
to bring the system under control, the result was that the variability
was high. Either control was lost in the initial few seconds of the trial
or the system was stabilized so that ''no response’ would produce a high

value of A.

The second modification, made instead of the first modification,
was more successful. The command signal was removed from the summing
junction ahead of the display and moved to a new summing junction ahead
of the controlled dynamics as shown in Fig. 21. This meant that through-
out the trial there was always an input to this controlled dynamics and
unless the subject responded continuously, the display limit would be

reached very quickly.

Figure 20 also shows results obtained after the second modification.

Following this modification, the subject's performance improved in all
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FIG. 21 MODIFIED CRITICAL TRACKING TASK

three conditions. Also noticeable was a reduction in the variability

of his performance within each condition; however, there was still more
variability in the tactile condition than in the visual or visual-tactile
conditions. Statistical analyses compared the subject's performance
across conditions. Table XII summarizes the data on which the analyses
were based. The results showed that there was no significant difference
between the performance in the visual and visual-tactile conditions.
However, the mean effective time delays in the visual and visual-tactile

conditions were clearly lower than in the tactile condition (p < 0.0l two

tail).
Table XII
MEAN EFFECTIVE TIME DELAY, Te(ms), FOR THREE CONDITIONS
Condition Mean Effective Time Delay (Te) S.D. No. Trials
Visual 166.05 22.45 20
Tactile 205.78 22.38 18
Visual-Tactile 161,2 22,40 20
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In addition, a number of trials were run in which EMG activity was
recorded from the biceps and triceps. In these trials the subject's arm
was fixed by a splint in a horizontal position with 90° flexion about
the elbow joint. The response was isometric, and torque about the elbow
joint was also recorded. An oscilloscope was used for the display.
Figure 22 shows two runs that typify the results. These runs illustrate
an increase in tension in both the agonist and antagonist as A increases,

a result predicted by McRuer, Magdaleno, and Moore (1967).
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FIG. 22 EMG ACTIVITY RECORDED FROM THE BICEPS AND TRICEPS
DURING VISUAL “CRITICAL"™ TASK TRACKING
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IV BISENSORY CHOICE REACTIONS
by S. W. Link

A. GENERAL

This section presents the results of five studies designed to inves-
tigate the interaction between the tactile and visual sense modalities.
As the title implies, the subject in these experiments is required to
attend to information presented through two sensory chammels in order to
select a response from a fixed response set. The measure of the subject's

performance is the time taken to respond to the presented stimuli.

The assumption is made that the ideal subject consists of three
interacting mechanisms. First, stimuli are assumed to be elements that
traverse an abstract sensory path called a channel. Secondly, channels

must converge on the sensory channel monitor. Finally, a response is

made by activation of the response mechanism. The structure of these

systems has not been investigated. Rather functional characteristics
have been exposed to yield insights into the assumptions that can be made

about the three systems.

The bisensory experimental paradigm is similar to that of choice
reaction time. In fact, if only a single channel is considered, stimuli
are mapped onto the response set in a one-to-one fashion, that is,
the same manner as in disjunctive choice reaction time. However, when
two channels map different stimuli onto the same response set the experi-

ment closely resembles the complication experiment first discussed by

Wundt in 1863.

Thus when bisensory stimuli are perceived well within the interval
for perceived simultaneity, the fundamental difference between bisensory
and unisensory experiments results from the mapping of stimuli onto re-
sponses. In the bisensory experiments discussed below, either of two
sensory channels can activate any of the possible responses. On a single

trial, information transmitted through different sensory channels may

o -  PRECEDING.
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indicate that only a single response, Al’ is required. Alternatively,
the stimulus elements transmitted on one channel may require response Al’

while the other channel carries elements requiring response A The

o

subject's task is simply to respond to the stimulus perceived first.
Intuitively there appears to be a basic distinction between the

presentations of conflicting and non-conflicting response information.

When both channels indicate response A, the reaction time might be less

1

than when one channel requires an A, response, while another channel

1

requires A Furthermore it is intuitively expected that the presenta-

9
tion of conflicting response information leads to a response time that
is longer than the response time if only a single stimulus indicates a
single response. These intuitions are shown by the results reported below

to be in error.

There are several reasons for this. The sparse experimental litera-
ture on responding to multiple stimuli (e.g., Todd, 1912) indicated that
responses to two stimuli are faster than responses to only a single
stimulus when stimuli are mapped uniquely onto the response set., Howell
and Donaldson (1963) found that responses to intermodality stimuli were
generally faster than responses to intramodality stimuli. Buser et al.
(1963) found that with short delays between two stimuli presented to
different sense modalities, a strong facilitation occurred in the latency
of the evoked potential recorded at the motor cortex of cats. Finally,
Morrell (1967) has also found a facilitation of reaction time when two
sense modalities are nearly simultaneously stimulated. Subjects instructed
to respond to a light, which was followed at various delays by a sharp
click, exhibited reaction times that were a linearly increasing function
of the delay of click over a range of 20 to 120 ms., These results
confirm the observation that reaction time is reduced when two bisensory

stimuli are presented in close temporal proximity to each other.

The focus of this section is largely on the effect of presenting con-
flicting response information through two different sensory channels.
The model describing reaction-time performance under bisensory stimulation
rests heavily on ideas first discussed by Falmagne (1964) and later
examined by Ollman (1966) and Yellott (1967). First we assume that
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correct responses to unisensory stimuli form a distribution of correct
response times characterized by a linear combination of fast and slow
response time distributions. Presumably, in choice reaction time, fast
response times are associated with ”guesses," and slower times with the
"true" reaction time distribution. Secondly, we assume that when two
stimuli are simultaneously presented the joint distribution of input
times to the sensory channel monitor is the minimum over the distribu-
tions for each independent sensory channel. Obviously the mean input
time for the minimum is smaller than the mean for either channel inde-

pendently.

To examine this model we have performed five experiments. The first
experiment (simple reaction time) was to determine if there were any
significant differences between responding to tactile and visual stimuli.
This experiment tests the assumption that if discrimination of the con-
tent of the stimulus is ignored, then response times for either visual

or tactile stimuli should be roughly equal.

The succeeding experiments were designed to test the notion that
responses to bisensory stimulation would be faster than responses to

unisensory stimuli.

B. EXPERIMENTS ON BISENSORY CHOICE REACTIONS
1. Apparatus

The experimental apparatus shown in Fig. 23 is the same as that
described by Bliss (1966). Neon bulbs mounted on two of the posts cor-
responding to the positions right and left provided visual stimuli (the
forward and backward portions were not used). Inside the joystick, air-
Jjets pointing to the right and left provided tactile stimuli. Mounted
on top of the joystick case was the visual warning light; an airjet
within the joystick and pointing toward the subject was used as a tactile
warning signal. An arm rest ensured that the pivotal point of the re-

sponse was at the wrist.

The experiments were carried out under control of a CDC 8090 com-

puter system, which was used to store stimuli, measure reaction times,
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FIG. 23 STIMULUS-RESPONSE APPARATUS FOR REACTION-TIME EXPERIMENT

record responses, and control the sequence in which the stimuli were pre-
sented. For each presentation the computer transmitted a word of 12 bits
to specially designed external apparatus. The external equipment then

simultaneously activated the tactile and visual stimuli.

The tactile stimulator generated bursts of air from a 1.4-mm outlet
port under control of a sensitive high-speed electromagnet. The pulse
pressure, measured 1/8 inch above the airjet outlet, was about 3 psi,
with a rise and fall time of about a millisecond and an overall pulse
width of about 2.5 ms. A 200-c¢/s pulse-repetition rate was used through-
out the experiments--i.e., the airjet was turned on and off 10 times
during a stimulus lasting 0.05s. The positions of the tactile stimulators
with respect to the palmar side of the hand are shown in Fig. 24. Visual
stimuli were provided by GE NE2 neon bulbs. These were of low intensity,
but to a slightly dark-adapted subject they provided ample indication of
the direction in which a response was to be made. All experimental ses-—
sions were run in a sparsely illuminated room in which the only light

source was external light filtering through a shaded skylight.

Responses were made by moving the joystick either to the left or to
the right. Special circuits were designed to detect when movements of

the joystick exceeded any of the four boundaries shown in Fig. 25.
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FIG. 25 THRESHOLDS FOR RECORDING RESPONSES (first threshold
11.25°, second threshold 22.5°)
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These thresholds were set at about 11° and 22° from the center position.
Whenever a threshold was exceeded, the computer was signaled and the
reaction time and the position of the response were recorded. In addi-
tion, the z coordinate of the joystick was recorded when a threshold was
exceeded. Response times were measured with an accuracy of one-half

millisecond.

2. Experimental Procedure

Nine subjects were trained in making responses to four possible
stimuli. Five experiments were performed to determine the speed, ac-
curacy, and processing characteristics of the tactile-visual system.

As shown in Fig. 26, on each trial the subject was presented with a
warning signal 0.5s after return-

ing the joystick to the center

— 0.15
- 0.05 position. After another delay
-’105|! 10— r_ of 1.15s, the stimulus was pre-
|
STIMULUS i sented. If, during these delays,
PN —
1 the subject moved the joystick
: WARNING I STIMULUS
[ LIGHT from the center position, brief
| | 1
RESPONSE | pulses were sent to all stimuli.
n —.l n+l
RTL#— To a slightly dark—-adapted sub-
TA-4719-7IR

ject, this provided a clear indi-

cation that the joystick should
FI1G. 26 TIMING ARRANGEMENT FOR

REACTION-TIME EXPERIMENTS be repositioned. After reposition-

ing, a new trial began.

Precautions were taken to ensure that the subjects could not simply
respond to auditory stimulation created by activating one of the four
airjets. On every trial (except rest trials in Experiment 1), three
dummy airjets were activated in addition to the stimulus. These jets

provided ample masking of auditory cues associated with a tactile stimulus.

As indicated in Fig. 25, there were two positions for stimulation
of each of the two sensory modalities. Thus, there were four distinct
stimuli but only two different responses. For the sake of brevity, we

will refer to the stimuli and responses by using a code of two letters,;
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the first letter indicates the sensory mode and the second letter the

position. Thus '"tactile right' becomes TR.

C. EXPERIMENTS

To obtain data concerning the experimental apparatus, a simple
reaction-time experiment was run. This served the purpose of providing
subjects with extensive training before participating in succeeding ex-
periments. In this experiment, each subject received two sessions of
525 trials. During a single session, one of the four possible stimuli
was presented for 21 consecutive trials, followed by a different stimulus
presented for 21 consecutive trials, and so on until all four stimuli
had been presented. In addition, occasional rest periods were provided by
illuminating the warning light in lieu of a stimulus for 21 consecutive
trials. Each subject was presented with a random ordering of four
stimuli and one rest period, five times, making a total of 525 trials

per session.

Experiments 2 through 5 are described by Table XIII, which specifies
the parameter values used to obtain the probabilities of presenting a

stimulus according to Fig. 27.

Table XIII
STIMULUS SCHEDULES FOR EXPERIMENTS 2 - 5

Parameter X
Experiment Warning
p X r a b c Signal
2 0 1/211/2|11/2 Visual
3 1i/2|11/2] o 0 | 1/2 | Visual
4 1/4 | 1/2 |1/3 |1 1/3 | 1/2 | Visual
5 1/4 | 1/2 |1/3 | 1/3 | 1/2 | Tactile
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FIG. 27 DESIGN FOR OBTAINING THE PROBABILITY OF PRESENTING
A GIVEN STIMULUS

D. RESULTS

Only responses measured at the first of the two response boundaries
(Fig. 25) were used in the analysis. The results for each experiment
were obtained by averaging the entire group of subjects. In general,
the performance characteristics of the subjects are remarkably similar.
Error rates were found to be higher in these experiments than in many
choice reaction time experiments. Therefore errors and correct responses

are presented for each experiment.




1, Experiment 1

To measure simple reaction time each subject was presented a series
of 21 consecutive trials of a single stimulus five times. Thus each
stimulus (TR, TL, VR, VL) was presented a total of 105 times during the
experimental session., For the purpose of analysis the first trial in a
block was ignored, leaving 100 trials from which to compute mean reaction

times. The results are shown in Table XIV.

Table XIV
MEAN REACTION TIMES AND ERROR PROBABILITIES FOR EXPERIMENT 1

Stimulus Reaction Time (ms) Probability of Error
Correct Error
TR 184 234 0.027
TL 190 262 0.067
VR 177 233 0.040
VL 194 224 0.035
T 187 254 0.047
\'s 186 228 0.038
Total 186 242 0.042

The results from Experiment 1 indicate that responses to the right
are slightly faster than responses to the left. Secondly, responses to
tactile and visual stimuli appear to be equally rapid. We may conclude
that the perception of tactile or visual stimulation results in equal
reaction times. This result does not imply that the discriminability of
stimulus direction is equivalent in the two modalities. Rather that in
a Go or No~Go task the intensities of stimulation are sufficient to

ensure equal reaction times.

The error rate in Experiment 1 was approximately 4 percent. For
each stimulus the error latencies were substantially longer than correct
response times. These errors may be attributed to lack of attention or
unfamiliarity with the experimental task. Error rates will be examined

more fully in the succeeding experiments.
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2, Experiments 2 and 3

In Experiment 2 the stimuli presented in blocks during Experiment 1
were presented in a random order. Each stimulus occurred with probabil-
ity 0.25 on any trial of the experiment. Thus the experiment was one of
disjunctive choice reaction time. Each subject participated in two experi-

mental sessions of 500 trials each.

For Experiment 3 the stimuli presented in Experiment 2 were combined
to form doublets that provided conflicting or non-conflicting response
information. The set of stimuli was VRTL, VLTR, VRTR, VLTL. Each
doublet was presented equally often during a random presentation of 500
trials, Subjects were instructed to respond to the first stimulus per-=

ceived.

The results from the last 400 trials of Experiment 2 are shown in
Table XV. In this experiment there was a marked increase in the differ-
ence between latencies to tactile and visual stimuli, In addition, the
error probabilities increased substantially above those observed in
Experiment 1. In contrast to Experiment 1 the error latencies are

shorter than correct-response reaction times.

Table XV
MEAN REACTION TIMES AND ERROR PROBABILITIES FOR EXPERIMENT 2

Stimulus |Reaction Time (ms) | p o111ty of Error
Correct Error
TR 326 270 0.218
TL 322 254 0.169
VR 288 310 0.115
VL 298 262 0.078
T 324 263 0.194
v 293 290 0.096
Total 308 272 0.145
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These differences are attributable to the increased difficulty of
the response task. Not only must the subject perceive the stimulation,
but he must also detect the correct direction toward which to make a

response.

Table XVI presents the results for the last 400 trials of Experi-
ment 3. Although there are differences in latency of response to each
doublet, the response probabilities are quite well behaved. In particu-
lar, the probability of a right response given TRVL is 0.308, and the
probability of a left response given TLVR is 0.295, Further, there is
little if any response bias. For the conflicting doublets the proba-

bility of a right response is 0.500, and for the non-conflicting doublets,
0.506.

Table XVI
MEAN REACTION TIMES AND RESPONSE PROBABILITIES FOR EXPERIMENT 3

Stimulus Reaction Time (ms) Probability of Left Response
Left Right
TRVL 244 248 0.692
TLVR 231 244 0.295
TRVR 212 244 0.168
TLVL 248 198 0.871
Conflicting 240 245 0.500
Non-Conflicting 241 238 0.506

Experiment 3 was run on the same day and immediately following the
completion of the last session of Experiment 2. Assuming that there are
no substantial practice effects, we can compare the results for Experi-
ments 2 and 3. The difference in reaction time for correct responses

in Experiment 2 versus doublets in Experiment 3 is about 50 ms.

3. Experiment 4

The stimuli presented in Experiments 2 and 3 were combined into a
single list of 600 randomly presented stimuli. During a single experi-

mental session the subject, already well practiced in making responses
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to the stimuli, was presented with the following set of stimuli: TR, VR,
TL, VL, TRVL, TLVR, TRVR, and TLVL. Although there are only four dis-
tinct stimuli, there are eight different patterns of stimulation. The
motivation for this experiment was to obtain data that would be free
largely from sequential effects. That is, sequential effects due to
repeated presentation of a specific stimulus would be unlikely to have

any significant influence on mean reaction times.

To ensure that subjects were well practiced in making responses to
the totality of available stimuli, each subject participated in six ses-
sions of 600 trials each. In the analysis of the data the first two
sessions were ignored, and only the last 400 trials of the remaining
sessions were analyzed. Thus for each subject there are 1600 observa-
tions, or a total, for the group, of 14,400 observations. The expected

number of presentations per stimulus is 1800 (see Fig. 27 and Table XIII).

The results in Table XVII corroborate the differences between uni-
sensory and bisensory stimulation reported by Bliss (1966). In general,
reaction times to bisensory stimulation are faster than reaction times
to unisensory stimuli, regardless of the nature of the response infor-

mation.

4, Experiment 5

Precisely the same experimental procedure was followed in Experi-
ment 5 as in Experiment 4 except for a change in the modality of the
warning signal. In previous experiments the warning signal was provided
by the illumination of a neon bulb fixed atop the joystick. In this
experiment a tactile warning signal was provided by airjet stimulation
of the palm (see Fig. 24). Each subject ran in two sessions of 600
trials each. The data reported in Table XVIII are from the last 400

trials of each subject's last session.

The results from this experiment are quite similar to the results
for Experiment 4. Except for a diminution of about 25 ms in overall
response time to singlet presentations and a comparable reduction for
doublets, the results are similar to those obtained in Experiment 4. It is

worth noting that the mean reaction times for errors drops by nearly 40 ms.
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Table XVII
MEAN REACTION TIMES AND RESPONSE PROBABILITIES FOR EXPERIMENT 4

Stimulus Reaction Time (ms) Probability of Error
Correct Error
TR 251 224 0.246
TL 258 216 0.221
VR 244 233 0.075
VL 250 217 0.061
T 254 220 0.234
\' 248 226 0.068
Total
Unisensory 250 222 0.151
Stimulus Reaction Time (ms) Probability of Left Response
Left Right
TRVL 236 238 0.707
TLVR 256 227 0.294
TRVR 192 222 0.090
TLVL 232 186 0.914
Conflict 242 230 0.500
Non-conflict 228 218 0.505
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Table XVIII
MEAN REACTION TIMES AND RESPONSE PROBABILITIES FOR EXPERIMENT 5

Stimulus Reaction Time (ms) Probability of Error
Correct Error
TR 225 195 0.345
TL 234 189 0.242
VR 220 172 0.114
VL 229 140 0.103
T 230 192 0.293
\' - 225 154 0.108
Total
Unisensory 227 182 0.200
Stimulus Reaction Time (ms) Probability of Left Response
Left Right
TRVL 222 216 0.657
TLVR 210 212 0.328
TRVR 168 208 0.119
TLVL 222 134 0.868
Conflict 218 213 0.495
Non-conflict 215 198 0.491
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E. DISCUSSION

The basic model for subject performance under bisensory stimulation
assumes that (1) the sensory input channels are independent, (2) subjects
respond to the first perceived stimulus, and (3) the time taken to respond
consists of an input distribution characteristic of the sensory channel

plus a motor time corresponding to the direction of the response.

However, the high error probabilities observed in these experiments
suggest that a detection process may also affect performance. We assume
that for each sensory channel there is a probability of detecting the
direction of a stimulus equal to Pi(i =T, V). If the direction is not
detected then the subject guesses, and responds to the right with prob-

ability a.

Although the perception of direction is not perfect, we can estimate
the probability of detection by simply correcting the observed data for
guessing. The possible outcomes for the presentation of stimulus

S, J,(i =T, Vj=R, L) are shown in Fig. 28.
’

When all stimuli are presented \
.——————-—"R i
equally often, we expect a to be 0.5, :DV//

These assumptions lead to an estimate s,
of p = 1-2 Pr (Error). Estimates may J\\::i\///g//'RR
be made independently for each sin- \\\t;g\

glet, or an average may be taken over R

L
a single sense modality. By aver-

P, = Pr (DETECTION)
aging over tactile and visual stimuli a=Pr (Rg | NODETECTION)
TA-6070-36
we obtained estimates of PT = 0,53
and PV = 0.86, FIG. 28 POSSIBLE OUTCOMES
FOR PRESENTATION
For bisensory doublets we assume OF STIMULUS SLi

that with probability v the subject

responds to the visual stimulus. By utilizing the estimates for PT and
PV we can easily estimate v from one doublet and then predict the proba-
bilities associated with responding left or right to the remaining
doublets., Using the data for the TRVL doublet we obtained an estimate

of v = 0,68,
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The predictions for the probability of a left response to the re-
maining stimuli are quite close. For TLVR we predict 0,293 and observe
0.295. For TLVL we predict 0.88 and observe 0.91., Similarly we predict
the probability of an error TRVR as 0.12 and observe 0.10. These results
suggest that rapid error responses may account for the increased speed

of bisensory reaction times.

The data from Experiments 2, 3, and 4 show that error latencies are
considerably faster than latencies for correct responses. Perhaps a
linear combination of reaction times for correct and erroneous responses
can account for the observed differences between the bisensory and uni-
sensory stimuli. A simple test of this conjecture can be made. Since
all events in the conflicting and non-conflicting presentations have
equal probability, average reaction times for these conditions should be
equal. However, the mean latency for the conflicting response presenta-
tions is 236 ms while the mean for the non-conflict doublets is 273 ms.
Since the standard errors are roughly 1.5 ms in either case, we must
conclude that the average data cannot be accounted for on the basis of a

linear combination of correct and error latencies.

Given the methods of estimation used in Experiment 4, we can assess
the effect of the tactile warning signal used in Experiment 5. Estimates
of the detection probabilities were found to be PT = 0.42 and Pv = 0,78,
The estimated probability of responding to the visual stimulus was
v = 0.74. The low value for PT corroborates subject's comments that
during Experiment 5, continued stimulation of the palm by the warning
signal made the perception of tactile stimuli more difficult than in
Experiment 4. The site of the TR stimulus was quite close to the site
of the tactile warning signal (Fig. 24). This may account for the large

difference between error probabilities for TR and TL.

The probability estimates, together with the error latencies, indi-
cate that part of the difference in mean reaction times between Experi-
ments 4 and 5 can be attributed to the numerous fast but erroneous re-
sponses occurring in Experiment 5. Another factor contributing to the
decrease in reaction time in Experiment 5 may have been the preparation

of the subject for the stimulus. Since the tactile warning signal was
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audible, it is quite possible that the joint effect of a tactile and
auditory warning signal produced greater preparedness for the stimulus

and thus faster response times.

The results contained in Experiments 2, 3, 4, and 5 have been sum-
marized in Fig. 29. For each experiment the mean reaction times, averaged
across right and left responses, for tactile, visual, conflicting, and
non-conflicting doublets are shown. The latencies or error responses are
indicated by slashes. The spacing of the experiments along the abscissa
represents the number of trials to the mean for each experiment. For
example, following Experiment 1, there were 1000 trials comprising
Experiment 2., The first 600 of these trials were practice, and the 1last
400 were entered into the data analysis. The 600 practice trials are
represented in Fig. 29 as the distance between Experiment 1, our time
origin, and the start of the 400 test trials of Experiment 2. If we
consider the mean performance to occur midway into the 400 test trials
(at trial 200), then the mean reaction time should be plotted at the
200th trial of the test series. Thus, the mean reaction time for Experi-

ment 2 is shown in Fig. 29 at the 800th trial from the origin,

The results are quite consistent in showing that responses to bi-
sensory stimuli are consistently faster than responses to unisensory
stimuli. To examine specific models in any detail individual data must
be examined. At present, calculations for individual data are in

progress.
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V. CONCLUSIONS
By J. C. Bliss

The results described in this report, combined with our previous
results, can be combined to form a rudimentary basis for models of
tactile perception and tactile-visual interactions. Major results that

any model of tactile perception must be consistent with are:

(1) When the time interval (Tj) between presentation of two
brief tactile stimuli is varied, subjects make more pat-
tern identification errors in their first response for
values of Ti less than 100 ms (backward masking), and
more second-response errors for Tj greater than 200 ms
(forward masking). This result suggests a model that
operates in discrete temporal epochs.

(2) Tactile pattern perception is enhanced when the pattern
is moved over the skin, the optimum rate of a l-cm-
diameter circular motion being about 150 ms per revolu-
tion. This result suggests lateral inhibition properties
for the tactile channel.

(3) There is a tactile short-term memory that decays approxi-
mately exponentially with a time constant of about 1.5 s
and can be trained to have a high information capacity.
This result suggests a model incorporating rapid parallel
input to an eidetic short-term storage.

(4) The number of errors subjects make in trying to report
sequentially presented tactile stimuli in correct order
decays exponentially, with a time constant of less than
a hundred ms, as the interstimulus interval (Tj) is in-
creased, This result specifies a temporal interaction
property.

These results suggest a tactile perceptual model patterned after

one developed for vision, mainly from the work of Sperling (1963),
Estes (1964), and Massa (1964), with supportive evidence from other
sources. The model for vision, as described by Massa, has five major
operations: rapid parallel signal read-in, eidetic short-term storage,

coded read-out, an intermediate memory storage, and an eye-movement

feedback control of the operation of the read-in and short-term storage
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functions. Our data indicate that the tactile channel has character-
istics similar to all of these operations except the role of eye move-

ments.

Results that any model for tactile-visual interactions must be
consistent with are:
(1) In a task requiring decisions or processing, such as a
choice reaction time task or continuous tracking task,
the effective time delay of the operator with a tactile

display is appreciably longer than that with a visual
display.

(2) Mean choice reaction time to tactile and visual stimuli
presented simultaneously is significantly faster than
that to either stimulus alone.

(3) When simultaneously applied tactile and visual stimuli
indicate different responses, the resulting mean reaction
time is approximately equal to that when both stimuli
indicate the same response.

(4) After training, subjects can track with a contacting
tactile display on the hand at a level of performance
comparable to that attained with peripheral vision.
That is, the phase characteristics are the same for
visual and for tactile tracking, but the low-frequency
gain is less and the remnant is greater with tactile
tracking.

(5) Continuous-command signal tracking performance with both
tactile and visual displays is not significantly dif-
ferent from that with the visual display alone.

These results suggest a rudimentary operator model in which the
processor input channel is switched, somewhat randomly and somewhat
voluntarily, between the tactile and visual modalities. Thus, mean
reaction time is shorter with two channels stimulated because the
input channel does not need to be switched (which presumably takes
time) before the signal can be processed. Two displays are of little
advantage with a continuous command because the subject can stay

switched to the superior channel most of the time.

These results and model suggest that a tactile display may be
particularly useful in a multiple task situation. For example, suppose
that an operator must control one axis of a vehicle and also monitor

several instruments and his environment. Let us also suppose that he
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is provided with redundant visual and tactile displays of the error

in his control axis. The existence of the tactile display should re-~
sult in a shorter mean reaction time to sudden changes in tracking error
and should free the visual channel somewhat for monitoring the instru-~
ments and environment. The same advantages for tactile displays should
also occur in multiple-axis tracking tasks. If consistently good per-
formance in one of the axes is crucial, this improvement in performance

may be particularly significant.

In addition to these experimental results, the following Appendices
describe developments toward more convenient computer control of on-line
experiments. It now appears possible and practical to time-share a
computer as small as the LINC-8 among several independent activities
related to psychological experimentation., Software developments toward
this goal are described., With the advent of commercially available
integrated circuits, computer interface design and construction are
greatly simplified and a particular design for computer control of point
stimulators is given., These computer-controlled facilities make possible
a rapid and convenient method for real-time analysis of tracking experi-
ments. Finally, a technique for real-time digital computer realization

of linear transfer functions is described.
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Appendix A
LUCIFER--A LINC-8 SYSTEM OF UTILITY PROGRAMS
FOR PROGRAM GENERATION AND CHECKOUT
by M. Wilber

The utility software supplied with the LINC-8 was written for the
classic LINC which has a keyboard instead of a teletypewriter as stan-
dard equipment, This software, therefore, fails to utilize the potential
advantages of two-way communication and hard-copy production that are
inherent with the teletypewriter supplied as standard equipment with the
LINC-8. 1In addition, by using the teletypewriter almost exclusively, in
preference to the scope and console switches, time sharing is more attrac-
tive since several teletypewriters can be connected to the LINC-8 and

used simultaneously.

For these reasons, and because we felt the result could signifi-
cantly increase our ability to generate and modify experiment control
programs, we undertook the development of LUCIFER (EINC Unrelenting
Console Interception and File Editinglgoutines). At first LUCIFER was
only to consist of the programs (described below) called Iceberg, Editor,
and Mung, and they were to peacefully coexist with the LAP4-Guide system
supplied with the LINC-8. However, after writing these programs, it
became apparent that LUCIFER could produce manuscripts not entirely
intelligible to LAP4, Out of the ashes of this work sprang LUCIFER,
which incorporates the following programs:

DDT: The purpose of this program is to aid in van-
quishing bugs, hence its name (rationalized as
Dynamic Debugging Iechnique). This program
permits examination and modification of any
memory location, the program counter, or the
accumulator. This can be accomplished only

through the teletypewriter. DDT also has a
facility for control of program execution.
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Editor: The program permits editing of a manuscript
whose contents are almost entirely unrestricted,
but normally consisting of mnemonics, symbolic
labels, and comments. After telling the editor
the name of a file and specifying a particular
line of text within that file, the user can
delete or replace that line and open the follow-
ing or preceding line.

Lister: This is a program to type out a manuscript or a
portion of a manuscript.

Iceberg: (There's more to it than meets the eye.) This
is a program for manipulating the LUCIFER file
directory. It can remove entries from the
directory and manufacture new entries. It can
change the name or size of the file represented
by an entry in the directory.

Assembler: This assembles a program from one or more manu-
scripts, building the corresponding core image
in a standard place on the tape. It is com-
patible with LAP4 in that a severe restriction
of its language is an extremely mild restriction
of LAP4's language.

MUNG: This program copies a manuscript into a file,
meanwhile packing it and creating a directory
for it.

DIRGEN: This program generates a LUCIFER directory to
all manuscripts filed by LAP4. This program is
useful in the transition from the LAP4 system
to the LUCIFER system.

There are several overall concepts on which LUCIFER is based. The
first is that of a directory. A directory is a collection of informa-
tion about the structuring of an entity. Thus GUIDE has a directory to
the images of the programs filed under itself; there is a directory
giving the name, location, and size of each manuscript, and each manu-
script has a directory giving information by which any line of the

manuscript may be found easily.

Another overall concept is that of prompting. Each program in the
LUCIFER system types out something before expecting a response, and what
it types is indicative of the state of the program and thus the desired
response. In particular, when a file name is desired, these programs

all type an asterisk. When there is no line or location open and the
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program is waiting for some command particular to itself, it types a
dot. When a line or location is open, the last two items typed are the

address and the contents.

Still another overall concept is that of similar command structures.
Whenever a file name is requested, the special name " Q"(a single blank,
followed by a "Q") is the command to quit that level, and whenever a dot
is typed for prompting, "'Q" is the command to quit that level. Whenever
a line or location is open, a carriage return is the command to make the

indicated modification, if any, and close the open location.

Furthermore, all input is in one of three modes: arbitrary string
with preset maximum size (e.g., file name); possibly a number, followed
by a nondigit (cf.,DDT); and a single character (cf., the Editor), In
the first mode, input is terminated upon receipt of a carriage return
or upon accumulation of more than the preset maximum number of charac-
ters; the second is terminated upon receipt of some character other
than a digit; and the third is terminated upon receipt of any character.
The first two modes also have provision for altering the input before
it is terminated. 1In line mode, the rubout key prints as backslash
and functions as a backspace, and in number mode, if more than four
digits are typed, only the last four are used, but there is no way to

remove the indication that a number has been typed.

A final overall concept of the LUCIFER system is that it should be
hard to do any damage to one's files, and especially that most mistakes
should be either harmless or harmful to oﬁly a limited amount of infor-
mation. On the other hand, LUCIFER is designed so that for most ways
in which information can be destroyed or damaged, the information can be
reconstituted with about as much effort as was needed to obliterate it
in the first place. The only necessary ingredient is, of course,
enough raw knowledge that one know how to resurrect the ruined informa-
tion. With LUCIFER programs, this knowledge is relatively easy to

obtain.
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Appendix B

PROTOCROCK: A STEP TOWARD TIME-SHARING ON THE LINC-8
by M. Wilber

We have been working toward a system to time-share the LINC-8 be-
tween the conduct of an experiment and the preparation or analysis of
data, or the preparation of future experiments. In addition, we are
planning to time-share the computer among several experiments, if pos-
sible. (The latter is more difficult because of the real-time con-
straints involved.) Our past experience with the LINC-8 and similar
computers in a devoted (non-time-shared) mode has indicated that real-
time experiments of the psychophysical variety can easily absorb all
available computer time and that during these experiments the computer
is loafing most of the time. Therefore, we feel that even a rudimentary
form of time-sharing would produce a very significant increment in our

output.

Most of the experiments we have planned will fit quite nicely into
the time-sharing framework, although we cannot use a perfectly general
time-sharing system and still run the experiments. The time-sharing
system we are developing will resemble the PDP-6 and PDP-10 systems
more closely than any of the other current time-sharing systems, but it
will inevitably show signs of implementation on a small computer. In
addition, full protection of users from each other will require a slight
modification of the computer. Time-sharing is possible because the LINC
computer in a LINC-8 system is partly hardware (the LINC subsystem) and
partly software (the PDP-8 program named PROGOFOP). The PROGOFOP pro-
gram is a large enough part of the LINC-8 computer that almost all the
time-sharing can be achieved by substituting another PDP-8 program

for PROGOFOP,
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We have developed a first version of this replacement for PROGOFOP
called PROTOCROCK. While time sharing is not yet operational, PROTOCROCK
is working well enough to be an adequate substitute for PROGOFOP in the
devoted mode. In addition to PROGOFOP capabilities, PROTOCROCK permits
LINC program input and output communication between the computer and our
own special peripherals. Included in these peripherals are two clocks,

a 60-c/s clock and a 1000-c/s clock. The 60-c/s is intended to run all
the time, while the 1000-c/s clock is meant to be used only during those

portions of experiments in which more accurate timing is required.

Now that PROTOCROCK is working the next step is to commence work

on time-sharing itself.
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Appendix C

A LINC-8 INTERFACE CONTROL FOR POINT STIMULATORS

An electronic interface to a LINC-8 computer, shown in Fig. C-1,
has been designed and constructed for control of up to 192 stimulators.
Several improvements over our previous system (Bliss and Crane, 1964)
have been incorporated in this design. This system consists of a com~
puter interface, a 12-by-16 matrix of storage flip-flops, and stimulator
drive circuits. Each point in the storage matrix can activate and mod-
ulate an airjet or piezoelectric bimorph tactile stimulator, a light
indicator, and (with appropriate drive circuits) unspecified tactile or

visual stimulators.

Under program control, the computer can store 12 bits at a time
(equivalent to one row) in the storage matrix. These 12 bits come from
the computer accumulator and are gated into the row of the matrix speci-
fied by a 16-bit ring counter. The ring counter is preset to a '"1"
state in its first flip-flop and a "0" state in the other 15 flip-flops.
The "1" state is stepped to the next flip-flop in the ring after the
contents of the accumulator are stored in each row of the storage matrix.
The entire 16 rows can be filled with an arbitrary pattern in less than
110 us. This system is sufficiently flexible that the same hardware
can be used in a wide variety of experiments by merely changing computer

programs.

The interface system enables the programmer, by means of three basic
PDP-8 IOT instructions, to write and erase in the storage matrix. The

IOT commands used are:

Code Function
6471 Reset all the flip-flops in the storage matrix.

6472 Reset the ring counter so that the first flip-flop is in
the "1" state and all others are in the ''0" state.

6474 Write the accumulator into the storage-matrix row indicated

by the ring counter; step the ring counter to the next posi-
tion; and clear the accumulator.

79




COMPUTER

INTERFACE ,
CONTROL PANEL ——— [EESSEET, | .

& VB B e
GATES - §

RING COUNTER ——m— L

R C LAMP DRIVER
ERS MATRIX STORAGE

FLIP—FLOPS

AIR JET
DRIVE CIRCUITS

BIMORPH
DRIVE CIRCUITS

LINC-8

I0 CABLES

LIGHT DISPLAY
DRIVE CIRCUITS

3.2 vDC
POWER SUPPLY

30 vDC
POWER SUPPLY

TA-6070-38

FIG. C-1 LINC-8 INTERFACE CONTROL FOR POINT TACTILE STIMULATORS
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These codes can be used in combination. For example, 6473 resets
both the storage matrix and the ring counter, while 6477 resets the
storage matrix and ring counter, writes the accumulator into the first

row of the matrix, steps the ring counter to the second row, and clears

the accumulator.

Although this set of commands is not completely general, since any
row of the storage matrix cannot be randomly addressed, our experience
has indicated that this command set is adequate for psychophysical ex-

periments because of the high speed of the LINC-8.

To illustrate how this system can be used, the following program-

ming example is offered:

Problem: Present a stimulus pattern on the first N rows of the
matrix, It is assumed that the address of the first row of the stimulus
pattern (minus one) is stored in location 10 and that the other rows

follow in order. Minus N is initially stored in location 7.

Location Program Timing (us) Comment
20 6473 3.75 Resets the storage matrix and
ring counter.
21 cla 1.5 Clears the accumulator.
22 r=>tad i 10 4.5 Loads the accumulator with one

row of the stimulus pattern.

23 6474 3.75 Writes the accumulator into one
row of the storage matrix and
steps the ring counter,

24 isz 7 3.0 Increments the contents of loca-
tion 7 and skips the next instruc-
tion if the contents of 7 are zero.

25 '— jmp 22 1.5 Gets the next row.
hit
The DEC FLIP-CHIP specification for this interface is shown in
Fig. C-2. This interface also controls the modulation of the stimulators
(typically 200 c/s for airjets and 250 c/s for bimorphs) by modulating
the storage matrix flip-flop output, which controls the stimulator driver.

In order to avoid split pulses and synchronize the modulation with the
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computer output, provision is made for disabling the modulation clock

while the computer is writing in the storage matrix.

The storage matrix and ring counter consist of Fairchild integrated
circuits. These are shown in Figs. C-3(a), (b), and (c). A teletype
keyboard is used with this system to allow the experimenter to type
responses of the subjects into the computer. Figure C-4 is a block

diagram of the keyboard interface.
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Appendix D

AN ON-LINE DIGITAL COMPUTER SYSTEM FOR TRACKING RESEARCH
by J. C. Bliss

Previously we reported a convenient method for obtaining human
operator describing functions with an on~line digital computer system
(Bliss, 1966). 1In this system a digital computer (CDC 8090) simulated
the command generator and determined the subject's response or error
spectra in real time. The Bode plots, or amplitude and phase measure-
ments of the response or error as a function of frequency, were available

to the experimenter immediately after a tracking run (usually 4 minutes).

During this year, similar programs for the LINC-8, but incorporat-
ing several major improvements over our previous system, were planned.
The writing and debugging of the first of these programs, that of the
"critical" tracking task (Jex, McDonnell, and Phatak, 1966) have been
completed. Planned programs yet to be completed involve determination
of the subject's open-loop describing function, response spectra, and
error spectra--all analyzed at an increased number of frequency values
on a single trial. We also expect to be able to switch between the
"critical" tracking task mode and the describing function analysis mode
under program control, making it possible to study the adaptation process

as the controlled element pole diverges.

A block diagram for this type of experiment is shown in Fig. D-1.
All parts of the system, except the display, subject, and manipulator,
consist of the LINC-8 and software. In the describing function analysis
mode, the LINC-8 cyclically generates a value for the display via the
D/A channel, inputs a response value via the A/D channel, and updates
the sums corresponding to the components of a Fourier analysis of two
signals at up to 20 values of frequency. Each of these cycles of the
program is arbitrarily set to 16-2/3 ms (our basic clock rate), so

that the display appears continuous to the subject, At the end of an
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FIG. D-1 ON-LINE COMPUTER SYSTEM FOR TRACKING RESEARCH (All blocks except

the Display and Subject consist of the Linc=8 computer and software.)

adjustable time, the experiment trial is terminated, and the required

floating point calculations are performed and outputted.

The command generator program contains a table of 15 values repre-
senting a quarter cycle of a sinusoid. The program uses this table to
generate a composite signal, consisting of a sum of sinusoids of arbi-

trary amplitude and phase, Thus,

e(t,) = Ic, sin (wt +o,) (D-1)

™M 2

where c(tk) is the value of the command during program cycle tk; c, is
the amplitude, 04 the phase, and wi the frequency of the ith sinusoid.
Up to 10 frequencies can be accommodated by the command generator pro-

gram, and the subsequent analysis is performed at these, plus 10 addi-

tional frequencies,

In the analysis programs, the input signals are multiplied by each
of a number of sine and cosine components, consisting of the frequencies

generated by the command generator plus up to 10 additional frequencies.
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The two input sighals may be either the error or display signals and
the response signal from the manipulator. Cumulative sums of the re-
sults of these multiplications are updated each program cycle, Thus,
if the input signal is r(tk) and the controlled element dynamics are a

pure gain, then the sums aj and bj are formed as follows:

T
a, = I c, sin (w,t )r(t )
J k=0 J Jk k
T
b, = I ¢, cos (w.t )r(t . D-2
j = E ey cos (e )u(s) (>-2)

The controlled element dynamics are also simulated in the LINC-8,
using the principles of digital filtering (Mantey, 1966; Kuo and Kaiser,

1966). In Appendix E the difference equations for several types of con-

trolled elements are derived.

The floating point program takes the sums generated during the ex-
perimental trial by the on-line analysis program and computes the ampli-
tudes Xj and phases wj of each of the up to 20 frequency components for

the two desired spectra, according to the following equations:

2 2
X, = —_ a + b,
J T J
a,
Pp. = tanm1 J . (D—3)
J bj

The two signals analyzed can be either the error sighal or display
signal, and either the response signal or the controlled element output.
The amplitude components of these two signals are divided and their
corresponding phases subtracted to obtain an open-loop describing func-
tion. The correlation coefficient between the response and the corre-
sponding linear system is also determined. The results of all these

calculations are then typed out on the on-line teletypewriter.
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In the ''critical' tracking task mode, the computer takes the abso-
lute value of the error signal, filters it with a first-order lag, and
adjusts the rate of divergence of the controlled element pole according
to whether the filtered absolute error signal is above or below a
threshold. The experiment is terminated when the absolute error signal
exceeds the limits of the display. The final value of )\, the position
of the controlled element pole, is then typed out., The effective time

delay of the subject is approximately 1/).

Section III of the main text describes our first experiment with
the "eritical' tracking task. As it continues to evolve, we plan to
use this system for tracking research to extend our previous investiga-

tion of subject performance with visual and/or tactile displays.
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Appendix E

REAL-TIME DIGITAL COMPUTER REALIZATION
OF LINEAR TRANSFER FUNCTIONS
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Appendix E

REAL-TIME DIGITAL COMPUTER REALIZATION
OF LINEAR TRANSFER FUNCTIONS

by J. C. Bliss

A digital computer can conveniently realize the filter and con-
trolled element transfer functions used in tracking experiments. The
basic procedures for design of these digital filters are derived from
z-transform theory and are discussed by Mantey (1966) and Kuo and Kaiser
(19686).

It is useful to make certain "predistortions" in the desired con-
tinuous transfer function in order to improve the resulting discrete
approximation to the continuous system. To understand this "predistor—
tion" step, recall that when a signal is sampled, the resulting spectrum
is obtained by convolving a periodic impulse train with the original
spectrum. If the spectrum of the original signal has finite bandwidth--
for example, negligible energy outside some low-frequency region fo—-
then if the sampling frequency is greater than 2f0, the resulting spec-
trum is a train of nonoverlapping replicas of the original spectrum.
Since these individual spectral pulses do not overlap, the spectrum of
the sampled signal contains no less information about the original
signal than does the original spectrum, and the original signal is re-
coverable from the sampled signal with an ideal low-pass filter. How-
ever, in situations in which the signal does not have a finite bandwidth,
information is lost and distortion occurs. To ensure that this does not
happen, a finite bandwidth filter, to limit the bandwidth of the in-
coming signal, is incorporated in the design. Ideally, this "predis—
tortion" filter should have a gain of 1 over the band of interest and
a gain of O elsewhere. However, these frequency characteristics are not
realizable in real time. After considering several functions for this
"predistortion" filter, including Butterworth, Tschebyscheff, zero-order
hold, first-order hold, and a combination of zero-order and first-order

hold, the zero-order hold function was chosen because it is a good
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approximation to the ideal filter, it results in a filter with a step
response that is exactly correct at the sampling instants, and it is

relatively simple to realize.

Thus, the steps in determining a difference equation suitable for

digital computer programming, approximating a continuous transfer func-

tion, are:

(1) Multiply the desired continuous transfer function
by the transfer function for a zero-order hold.

Example: Let H(s) = K/(s - a) be the desired con-
tinuous transfer function. The transfer function
for a zero-order hold is (1 - e ST/s). Then,

Hy(s) = <s = a) (1 —se_ST) : (E-1)

(2) Make a partial fraction expansion of this product:

H (s) = (1 - e'ST) [:—S—Ef—a; - K—?] . (E-2)

(3) Convert to z-transforms using a table (Mantey,
1966) or the following transform pairs:

1/s -
1 - z—1
(E-3)
1 . 1
S + a 1 -aTZ—l
Thus,
-1 K/a K/a
H,(z) = (1 z ) T -3 . (E-4)
1 -e 'z 1 -2z

(4) Invert the z-transform to obtain the desired dif-
ference equation,
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1

H (z) = Y(z _ K/a z—l(eaT - 1)
1 T X(z - aT -1
~ e z

y(ar) = (x/a)x[(n - 1)11(e*" - 1) + *yl(n - 1)1] (E-5)

where x is the input and y is the output of the filter.

Check: The resulting difference equation should
give exactly the same output to a step—-function in-
put as the corresponding continuous transfer func-
tion. That is, if

x(nT) = 1 for n = 0,1, 2, ...
=0 elsewhere,
then from Eq. (E-5),
y(0) = ©
y(r) = K/a(e®f - 1)
y(2T) = K/a (e2aT - 1)
y(3T) = K/a (eSaT - 1)

Table E-1 gives difference equations for several continuous transfer

functions.

97



ﬁBAN - cvwhewo - mBAH - :vuuAa + Hmov +

ﬁhBAN - u)x ﬁﬁﬁ - Hmvhmm + mg + [L(T - zvuxAH - e - Bmva Mﬂ = (Iu)4 (e |vam
s
[1(z - W) - [a(1 - W8 + {[i(z - W + (KT - W] le = ()4 <
a0+ (1) - - |
[L(T - u)]& + [I(1T - u)Jx1¥ = (Iu)4 s/¥

uotyenby eousiaiITd (s)H

SNOILONNI YTASNVYU.L
YYANIT TVYIAAS ¥Od SNOLLVNODA IINFUALIIA

T-3 2I9EL

98




REFERENCES

Allison, T., "Recovery Functions of Somatosensory Evoked Responses in
Man," Electroenceph. Clin. Neurophysiol., Vol. 14, pp. 331-343 (1962).

Alluisi, E. A., B. Morgan, and G. Hawkes, 'Masking of Cutaneous Sensa-
tions in Multiple Stimulus Presentations," Perceptual and Motor Skills,
Vol. 20, pp. 39-45 (February 1965).

Averbach, E., and A. S, Coriell, "Short-Term Memory in Vision," Bell
Systems Tech. J., Vol. 40, pp. 307-328 (January 1961).

1"

Bekey, G. A., "The Human Operator as a Sampled-Data System,

IRE Trans.
on Human Factors in Electronics, pp. 43-51 (September 1962).

Bliss, J. C., "'Tactual Perception: Experiments and Models," Final
Report, SRI Projects 5438 and 4719, Contracts NAS 2-2752 and

AF 33(615)-1099, Stanford Research Institute, Menlo Park, California
(25 April 1966).

Bliss, J. C., and H. D, Crane, "'A Computer-Aided Instrumentation System
for Studies in Tactual Perception,' Proc. 16th Annual NAECON Conf .,
Dayton, Ohio, pp. 375-384 (May 1964).

Bliss, J. C., H. D. Crane, and S. W, Link, "Effect of Display Movement on

Tactile Pattern Perception,' Perception and Psychophysics, 1, pp. 195-202
(1966).

Bliss, J, C., H. D, Crane, S. W. Link, and J. T. Townsend, Tactile
Perception of Sequentially Presented Spatial Patterns,' Perception and
Psychophysics, Vol. 1, pp. 125-130 (May 1966).

Bliss, J. C., H. D, Crane, P, K. Mansfield, and J. T. Townsend, ' Infor-
mation Available in Brief Tactile Presentations," Perception and Psycho-
physics, Vol. 1, pp. 273-283 (August 1966).

Boring, E, G., Sensation and Perception in the History of Experimental
Psychology (D. Appleton~Century Company, Inc., New York, N.Y., 1942;.

Buser, P,, J. Ascher, J. Bruner, D. Jassk-Gerschenfeld, and R. Sindberg,
"Aspects of Sensorimotor Reverberation to Acoustic and Visual Stimuli,

The Role of Primary Specific Cortical Areas,' Progress in Brain Research,
Vol. 1 (Elsevier, 1963).

Estes, W. K., and H. A. Taylor, "A Detection Method and Probabilistic
Models for Assessing Information Processing from Brief Visual Displays,"
Proc National Academy of Sciences, 52, 2, pp. 446-454 (August 1964).

99



Falmagne, J., "Stochastic Models for Choice Reaction Time with Applica-
tion to Experimental Results,' Math. Psychol., Vol. 2, pp. 72-124
(February 1965).

Hill, J., Perception of Multiple Tactile Stimuli, Ph.D. Dissertation,
Dept. of Electrical Engineering, Stanford University, California (in
preparation).

Howell, W. C., and J. E, Donaldson, "Human Choice Reaction Time Within
and Among Sense Modalities,' Science, Vol. 135, pp. 429-30 (1962).
Jex, H, R., J. D. McDonnell, and A. V. Phatak, "A 'Critical' Tracking
Task for Manual Control Research," IEEE Trans. on Human Factors in
Electronics, Vol. HFE-7, No. 4, pp. 138-145 (December 1966).

Kotovsky, K., and J. C. Bliss, "Tactile Presentation of Visual Informa-
tion," Trans. IRE, Vol. MIL-7, pp. 108-112 (April-July 1963).

Kuo, F, F., and J. F, Kaiser, System Analysis by Digital Computer (John
Wiley and Sons, Inc., New York, 1966).

Mantey, P. E., "Digital-Computer Implementation of Linear Systems,
SU-SEL-66-063, Systems Techniques Laboratory, Systems Theory Laboratory,
Stanford Electronics Laboratories, Stanford University, California
(October 1966).

Massa, R. J., ''The Role of Short-Term Visual Memory in Visual Information
Processing,'' Symposium on Models for the Perception of Speech and Visual
Form (November 1964).

McRuer, D., D, Graham, E. Krendel, and W. Reisener, Jr., 'Human Pilot
Dynamics in Compensatory Systems,' Technical Report Nr. AFFDL-TR-65-15
(July 1965).

McRuer, D., R. Magdalena, and G. Moore, "A Neuromuscular Actuation System
Model," Presented at the USC-NASA Conference on Manual Control,
March 1-3, 1967.

Miller, G. A., "The Magic Number Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Information,' Psychological Review,
Vol. 63, pp. 81-97 (1956).

Morrell, L., "Reaction Time and Evoked Potentials, paper presented at
Western Psychological Association Convention, San Francisco, 1967.

Ollman, R., "Fast Guesses in Choice Reaction Time,' Psychonomic Science,
Vol. 6, pp. 155-156 (1966).

Seeley, H, F., and J, C. Bliss, "Compensatory Tracking with Visual and

Tactile Displays,' Trans. IEEE on Human Factors in Electronics (in press,
1966) .

100




Sherrick, C, E., and R. Rogers, 'Apparent Haptic Movement,' Perception
and Psychophysics, Vol. 1, pp. 175-80 (1966).

Sperling, G., 'The Information Available in Brief Visual Presentations,
Psych. Monographs, General and Applied, Vol. 74, No. 11, pp. 1-29 (1960).

Sperling, G., "A Model for Visual Memory Tasks,' Human Factors, pp. 19-31
(February 1963).

Sumby, W. H., "An Experimental Study of Vibrotactile Apparent Motion,'
Research Bulletin of the American Foundation for the Blind, pp. 71-101
(April 1965).

Todd, J. W., "Reaction to Multiple Stimuli," Archives of Psychology,
New York, No. 25 (1912),

Yellott, J., "'Correction for Guessing in Choice Reaction Time,"

Unpublished paper, University of Minnesota Center for Research in Human
Learning (1967).

101



* UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate aurhor) 2a. REPORTYT SECURITY CLASSIFICATION
Stanford Research Institute UNCLASSIFIED
333 Ravenswood Avenue 2b. GROUP
Menlo Park, California N/A

3. REPORT TITLE

TACTUAL PERCEPTION: EXPERIMENTS AND MODELS

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Final Report Covering the period 24 May 1966 to 24 May 1967

5. AUTHOR(S) (First name, middle initial, last name)

James C. Bliss

6. REPORTY DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
June 1967 116 32
8a. CONTRACT OR GRANT NO. %9a. ORIGINATOR'S REPORT NUMBER(S)
Contract NAS2-3649 Final Report
b, PROJECT NO. SRI Project 6070
c. 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)
d.

10. DISTRIBUTION STATEMENT

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
National Aeronautics and Space Administration
Ames Research Center

Moffett Field, Calif.

13. ABSTRACT

Experiments in tactile perception, tactile and visual tracking behavior, and tactile and visual choice
reaction time are described. Results from an experiment on tactile perception of sequentially presented
point stimuli indicate that content errors (responses that are incorrect regardless of what order they

are in) are constant as the interstimulus interval is increased up to 200 ms, and that sequence errors
(errors caused only by responding in an incorrect order) decrease exponentially with interstimulus interval.
The total error can be expressed as a linear sum of a constant, representing tKe content error, and a
decaying exponential function of interstimulus interval (with a time constant of less than 100 ms),
representing the sequential error.

In the tracking experiments comparisons were made between tracking performance when an airjet stimulator
moved horizontally across the forehead and when it moved along the palmar side of the hand and index finger.
Performance appeared to be about equal in these two cases. A comparison of performance with a contacting
tactile stimulus and a visual display revealed essentially the same phase characteristics for both displays,
but less gain and more remnant power with the tactile display.

Results from “critical” tracking with both visual and tactile displays indicated a greater effective time
delay with the tactile display and no significant difference between tracking with the visual display only
and tracking with both the visual and tactile displays used simultaneously.

In the reaction-time experiments subjects could receive either tactile or visual stimuli, or both simul-
taneously, on any one trial. 1In a simple reaction-time experiment in which only one response was required,
the tactile and visual reaction times were approximately equal. However, in the two-choice version of the
experiment, response times were appreciably longer, and the probability of an error was greater with the
tactile stimuli than with the visual stimuli. hen both tactile and visual stimuli were presented simul-
taneously, significantly shorter reaction times were obtained than with either stimulus alone. These re-
sults are consistent with a model which assumes that the sensory input channels are independent of each
other and that subjects tend to respond to the first perceived stimulus.

Five Appendices describe developments on new techniques and facilities for conducting a wide variety of
experiments on tactile perception, which range from presentation of mult@gle.poipt stimuli to analyses of
describing functions in tracking experiments. The key item in these facilities is a LINC-8 computer, which
will control, in a time-shared mode, the presentation of the stimuli, and record and analyze the responses

FORM
DD .1473 (Pace 1) UNCLASSIFIED
S/N 0101.807-6801 Security Classification




UNCLASSIFIED

Security Classification

KEY WORDS

LINK A LINK B

LINK C

ROLE

wT ROLE wT

ROLE wT

Tactile perception
Psychophysics
Short-term memory
Span of attention
Displays

Reaction time
Manual control
Display movement
Vision

On-line computer

DD .2™..1473 (sacx)

(PAGE 2)

UNCLASSIFIED

Security Classification




